Consistent structure estimation of exponential-family random graph models with block structure
نویسندگان
چکیده
منابع مشابه
Exponential random graph models for networks with community structure
Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop a...
متن کاملExploring biological network structure using exponential random graph models
MOTIVATION The functioning of biological networks depends in large part on their complex underlying structure. When studying their systemic nature many modeling approaches focus on identifying simple, but prominent, structural components, as such components are easier to understand, and, once identified, can be used as building blocks to succinctly describe the network. RESULTS In recent soci...
متن کاملExponential-Family Random Graph Models with Time Varying Network Parameters
Dynamic networks are a general language for describing time-evolving complex systems, and have long been an interesting research area. It is a fundamental research question to model time varying network parameters. However, due to difficulties in modeling functional network parameters, there is little progress in the current literature to effectively model time varying network parameters. In th...
متن کاملExponential random graph models
Synonyms p* models, p-star models, p1 models, exponential family of random graphs, maximum entropy random networks, logit models, Markov graphs Glossary • Graph and network: the terms are used interchangeably in this essay. • Real-world network: (real network, observed network) means network data the researcher has collected and is interested in modelling. • Ensemble of graphs: means the set of...
متن کاملMarkov Chain Monte Carlo Estimation of Exponential Random Graph Models
This paper is about estimating the parameters of the exponential random graph model, also known as the p∗ model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures considered are based on the Robbins-Monro algorithm for approximating a solution to the likelihood equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2020
ISSN: 1350-7265
DOI: 10.3150/19-bej1153